

Sustainable Groundwater Management Act Workshop

September 2018

General Manager

Aaron Fukuda

District Engineer

Bill Sario

Tulare Irrigation District

Changes in Management & Staff

Assistant Engineer

Jeremy Barroll

2018 Tulare ID Surface Water Run

Total Surface Water: 400,000 AF Farm Turnout: 171,500 AF Groundwater Recharge: 220,000 AF 101,900 AF Kaweah River Total Surface Water Diverted to (AF), the District 41,300 CVP (AF), 60,600 56,000 AF (54%) 45,900 AF (45%) Water Delivered to Farm Water Delivered for Groundwater Recharge Turnouts

2017 Water Year:

Tulare Irrigation District Groundwater Chapters

1922 – 2017 historical depth to groundwater

Historical Depth to Groundwater In Tulare ID

Groundwater Metering Context

- Sustainable Groundwater Management Act (SGMA) §10725.8 Measurement Devices and Reporting
 - May require the use of a water-measuring device
 - All costs of water-measuring device borne by owner/operator
 - May require annual statements from owner/operator
 - May use any other reasonable method for measurement

- Pumping data used for:
 - Annual reporting (aggregated)
 - Tracking of Pumping Allocations
 - Penalties in the event of exceedance of pumping allocations
 - Water budgets

- Other MKGSA members currently measure at the extraction point and at the use
- Tulare Irrigation District must identify a watermeasurement method
 - Coordinates with other MKGSA members
 - Coordinates with other Kaweah Sub-Basin members

Preliminary Metering Options

District Groundwater Well Survey

- July 2017 Intern conducted a visual survey of groundwater wells
 - Survey from public roads
 - No groundwater well measurements were taken
 - Approximately 60 groundwater wells had existing meters

	6"	8″	10"	12"	Unknown	Total
Groundwater Well Discharge Sizing	92	292	204	12	177	777

Utilization of Energy Records

- Utilizing energy bills and pump characteristics you can estimate groundwater pumping
- Subject to accurately knowing pumping depth and pump efficiency
- Accuracy Range: 7-10% +/-
- Implementation through District efforts or vendor (PowWow Energy)
- Cost Estimate
 - Development: \$160,000 to \$250,000
 - Annual: \$330,000+

Propeller Meters

- Velocity of water rotates propeller that turns shaft that creates pulse
- Totalizer/registers indicate flow and volume
 - Can be outfitted with elec. output signals
- Wear and tear lead to mechanical failures
 - Requires robust maintenance program
- Accuracy: +/- 2%
 - Straight pipe requirement upstream and downstream
 - Straightening vanes can improve accuracy
- Implementation
 - Landowner Installation
 - District Installation
- Maintenance Program is critical
- Cost Estimate
 - Development Costs: \$4.36 million
 - Annual Costs: \$250,000

Magmeters

- Water moves through a magnetic field creating a voltage that is proportional to the velocity of the water
 - Voltage is converted to flow and volume
 - Transmitter converts signal for output
- Must be installed with straight pipe requirements upstream and downstream
- Accuracy: +/- 1% or less
- Flanged or Insertion Alternatives
- Cost Estimate
 - Development Costs: \$3.32 million
 - Annual Costs: \$150,000

Satellite Imagery

- KDWCD ET Study
 - Crop ET determined by remote (satellite imagery)
 - Using Crop Consumptive Use Fraction (CCUF) they could model the pumping extractions
 - Aggregated accuracy at approximately 7%
- Cal Poly ITRC
 - Using same approach to determine ET
 - Use the Crop ET to establish a consumptive allocation
 - Not vetted or approved by DWR
- Costs Estimate
 - Development Costs: \$60,000 \$100,000
 - Annual Costs: \$10,000 \$40,000

Data Acquisition

Field Acquisition

- District Staff field collects data from 800 wells
- Data can be physically field recorded or downloaded
- Fairly time intensive operation by a dedicated staff

LoRa Network

- Long range, low power, cost effective wireless network
- Central Valley Senet network
- Battery powered (7-10) Years

Cellular Network

- Verizon network with modems for each well
- Monthly data charges (expensive)
- Equipment costs are fairly expensive

Post-Processing Software

- Once a method is identified for measuring or estimating groundwater pumping how do you maintain and display the information?
- No SGMA specific software developed
- Researched:
 - Waterfind USA
 - Kii
 - STORM

Groundwater Measurement Demonstration Project

- Phase 1 Identify Demonstration systems for measurement of groundwater extraction
- Phase 2 Develop and present Groundwater Measurement 2018/19 Demonstration Scope of Work and Budget
- Phase 3 Acquire demonstration units
- Phase 4 Install demonstration units on voluntary wells

The Tulare ID Solutions

Thank You

Aaron Fukuda – Tulare Irrigation District

(559) 686-3425

akf@tulareid.org

www.tulareid.org

Paul Hendrix – Mid-Kaweah GSA (559) 686-2166 jph@midkweah.org

www.midkaweah.org

