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Abstract Reliable accounting of agricultural water use is critical for sustainable water management.
However, the majority of agricultural water use is not monitored, with limited metering of irrigation
despite increasing pressure on both groundwater and surface water resources in many agricultural regions
worldwide. Satellite remote sensing has been proposed as a low-cost and scalable solution to fill
widespread gaps in monitoring of irrigation water use in both developed and developing countries,
bypassing the technical, socioeconomic, and political challenges that to date have constrained in situ
metering. In this paper, we show through a systematic meta-analysis that the relative accuracy of different
satellite-based irrigation water use monitoring approaches remains poorly understood, with evidence of
large uncertainties when water use estimates are validated against in situ irrigation data at both field and
regional scales. Subsequently, we demonstrate that water use measurement errors result in large economic
welfare losses for farmers and may negatively impact ability of policies to limit acute and nonlinear
externalities of irrigation abstraction on both the environment and other water users. Our findings
highlight that water resource planners must consider the trade-offs between accuracy and costs associated
with different water use accounting approaches. Remote sensing has an important role to play in
supporting improved agricultural water accounting—both independently and in combination with in situ
monitoring. However, greater transparency and evidence is needed about underlying uncertainties in
satellite-based models, along with how these measurement errors affect the performance of associated
policies to manage different short- and long-term externalities of irrigation water use.

1. Introduction
Agriculture is the main sectoral user of freshwater worldwide. As competition over limited water resources
increases, policymakers in many regions are seeking to limit agricultural water withdrawals and incentivize
improvements in the productivity of irrigation water use. The types of policies and interventions that have
been proposed or implemented vary between regions, ranging from volumetric pumping quotas or power
rationing (Aarnoudse et al., 2019; Foster et al., 2017; Sidhu et al., 2020), taxes on extraction or reforms to
water pricing (Fishman et al., 2016; Rad et al., 2020; Smith et al., 2017), to water markets (Calatrava &
Martínez-Granados, 2019; Palazzo & Brozović, 2014; Rouillard, 2020). However, a key requirement in each
case is the ability to monitor farmers' water withdrawals in order to enforce rules governing individual
abstraction rates (OECD, 2015) and determine future sustainable abstraction limits (Butler Jr et al., 2018).

Despite the importance of monitoring for water management, the overwhelming majority of agricultural
water use worldwide—both from groundwater and surface water—remains unmetered (OECD, 2015). For
example, a recent report by the Murray-Darling Basin Commission in Australia highlighted that around 30%
of the total surface water abstractions were unmetered (MDMA, 2017), with monitoring gaps of up to 75%
in some parts of the basin (Grafton, 2019; Hanemann & Young, 2020). Similarly, estimates from the U.S.
Department of Agriculture (USDA, 2019) show only 36% of groundwater irrigation wells in the United States
are equipped with flow meters (Figure 1), with large monitoring gaps in states such as California and Texas
that have experienced severe aquifer depletion over recent decades (Scanlon et al., 2012). In low-income
countries, gaps in agricultural water use accounting are even more pronounced, with almost nonexistence
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Figure 1. Percentage of groundwater irrigation wells with an attached flow metering device for each state in the
United States. States shaded in gray, for which data are not plotted, contain less than 1,000 active groundwater
irrigation wells. Data are obtained from the U.S. Department of Agriculture's 2018 Irrigation and Water Management
Survey (USDA, 2019) and includes flow meters installed for both regulatory and nonregulatory purposes.

monitoring and reporting of agricultural water use in areas of intensive irrigation across Africa, Asia, and
the Middle East (Balasubramanya & Stifel, 2020)

A key factor underpinning the low levels of metering of water abstractions for irrigation is the difficulty faced
by managers and regulators in maintaining reliable and complete records of the locations of abstraction
wells or diversions. In surface water irrigation systems illegal off-takes from canals or rivers are common
(e.g., Hanemann & Young, 2020), in particular in developing countries where diversions may be small scale
and based on simple temporary infrastructure that exist outside of official planning and permitting processes
(Veldwisch et al., 2019; Woodhouse et al., 2017). Monitoring locations of groundwater irrigation is often
even more challenging because the infrastructure (pumps and wells) used to abstract water is commonly
entirely privately owned and operated by farmers (Al Naber & Molle, 2017; De Stefano & Lopez-Gunn, 2012;
Shah, 2014; Wester et al., 2009). Illegal or unregistered irrigation wells exist in developed countries where
permitting and monitoring on paper are mandated by governments (De Stefano & Lopez-Gunn, 2012) and
are widespread in low-income countries where most farmers are small scale and reliant on wells drilled
without official permission or licensing (Al Naber & Molle, 2017; Shah, 2014; Wester et al., 2009).

Where locations of irrigation abstractions are known, implementing and enforcing in situ metering remains
challenging for a number of reasons. Farmers may oppose or lobby against the installation of meters due
to concerns about increased future regulation (López-Gunn, 2012; Rinaudo et al., 2016). When meters
are installed, collecting readings and maintaining monitoring infrastructure can be extremely costly and
time-consuming for resource-limited regulators (Closas & Molle, 2018; Hoogesteger, 2018; Novo et al., 2015)
and must be accompanied by strong sanctions and penalties to deter rule breaking or cheating (Montginoul
et al., 2016). For example, the Upper Republican Natural Resources District in Nebraska in the United States
has in recent years revoked groundwater rights to irrigators who have been caught attempting to bypass flow
meters (Brozović & Young, 2014). These types of responses, however, are typically the exception to the rule.
Instead, in many regions, metering systems are never installed or quickly fall into disrepair due to meter
tampering, poor maintenance, and insufficient penalties for rule breaking (Molle & Closas, 2020b).

Motivated by the technical, economic, and political challenges associated with in situ metering, researchers
and water managers are seeking alternative solutions for monitoring distributed agricultural water use to
support regulation, planning, and management. One such approach is through use of satellite remote sens-
ing. Remote sensing has been widely used to monitor irrigated areas over space and time (Ambika et al.,
2016; Deines et al., 2019; Vogels et al., 2019). However, more recently, there has been growing interest among
researchers and policymakers in the potential to use satellite-based remote sensing as a tool for monitoring
irrigation rates in the absence of, or as a substitute for, in situ metering (Brocca et al., 2018; Hunink et al.,
2015). Satellite data are seen as a key tool for future water use monitoring and governance in a number of
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regions, including as part of California's Sustainable Groundwater Management Act (SGMA) in the United
States (Babbitt et al., 2018) and Murray-Darling Basin Plan (MDBP) in Australia (Bretreger et al., 2019).
Similarly, water accounting based on open-access remote sensing data has been proposed as a solution for
spatially explicit monitoring of agricultural water use, in particular in smallholder farming systems with
negligible in situ water use monitoring infrastructure. For example, the U.N. Food and Agriculture Organi-
zation, UNESCO-IHE, and partners have widely championed the Water Accounting Framework (Karimi et
al., 2013; Molden & Sakthivadivel, 1999) to support agricultural water management, while the World Bank
through its Global Water and Sanitation Partnership has emphasized the important role of satellite moni-
toring of evapotranspiration (ET) and irrigation water use in supporting future water resource planning and
decision-making (Capdevila & Herrmann, 2019).

Despite this, at present there remains significant uncertainty about the accuracy and reliability of
satellite-based approaches for monitoring irrigation water use in particular at the scales relevant for moni-
toring and enforcement of agricultural water management policies. Errors in satellite-based monitoring and
accounting of irrigation water use have potential to generate significant negative impacts on farmers (e.g., if
their water use is overestimated leading to unfair restrictions or penalties) and water resource sustainability
(e.g., if agricultural water users are incorrectly allowed to exceed intended abstraction limits). In this study,
we address these knowledge gaps through a comprehensive analysis of the uncertainties and associated
welfare implications of satellite-based monitoring of irrigation water use. We first conduct a meta-analysis
of existing published research to examine the scale and underlying causes of measurement errors result-
ing from satellite-based water use monitoring. We show that studies using satellite data for irrigation water
use estimation commonly lack adequate validation against in situ data and report significant uncertainties
when used to monitor water use at plot scales. Subsequently, we demonstrate theoretically that these errors
in water use measurement will induce welfare losses for farmers and have the potential to negatively affect
the performance of water management policies where irrigation abstraction has nonlinear impacts on other
water users and the environment. Our findings show that there are a number of technical and institutional
challenges for use of remote sensing for water use monitoring and accounting and highlight the need for
greater research focus on validation and assessment of trade-offs between monitoring accuracy and costs to
support effective and judicious use of satellite data in agricultural water management and policy.

2. Uncertainty in Satellite-Based Water Use Estimates
2.1. Study Selection and Synthesis
In order to assess the status of research concerning satellite-based monitoring of irrigation water use, includ-
ing associated levels and sources of measurement uncertainty, we first conducted a systematic review of
the peer-reviewed literature by searching Scopus for research articles published since 1980 and containing
a selection of relevant keywords. Specific keywords considered were combinations “irrigation” and one or
more of “withdrawal” or “estimate” or “use” or “requirement” and one or more of “satellite” or “remote
sensing” or “Earth observation.”

Of the 2,126 papers initially identified, a total of 73 was selected for full review following assessment of infor-
mation given abstracts and methodologies of the papers of which 41 were retained within the final sample
for our systematic review (see Table S1 in the supporting information for a full list of these 41 studies). The
sift of papers focused attention on studies that used Earth observation data to estimate irrigation application
rates or requirements—comparable to what would be provided by in situ flow meters—excluding studies
that sought to use remote sensing to quantify total crop ET fluxes (i.e., consumptive water use) or irrigated
areas.

Each of the 41 papers retained was read and reviewed in full, recording a number of key details about each
study. Specifically, we sought to document and record information about the (i) geographic and temporal
focus of the analysis, (ii) formulation—for example, applied irrigation versus irrigation requirements—in
which irrigation use was estimated, (iii) types of satellite products and models used in the analysis, and (iv)
spatial and temporal resolution of irrigation water use estimation.

Alongside information about the key characteristics of each study and the methodological approach used
to estimate irrigation water use, we also sought to record and synthesize evidence about the validation of
satellite-based water use estimates. We collected information for each study about any in situ monitoring
data used to assess accuracy of satellite-based water use estimates, including the source, characteristics, and
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Figure 2. Cumulative total number of peer-reviewed studies since 2005
that use remote sensing to estimate irrigation water use or requirements
identified through our systematic literature review as described in section 2

spatial and temporal resolution of this ground-truth data. Accuracy of
water use estimates was recorded where this information was reported,
along with information about the specific performance metrics and scales
(spatial and temporal) used when producing these metrics.

Where validation was performed and reported in a study, information
was also recorded about any key factors highlighted by authors as deter-
minants of higher or lower levels of accuracy in satellite-based water
use estimates. We collated evidence about the key factors constraining
accuracy of satellite-based assessments of irrigation water use to inform
subsequent discussions about future needs, challenges, and opportunities
to enable uptake of such methods in policy and practice.

2.2. Study Characteristics and Estimation Approaches
Our review highlights that use of satellite remote sensing for estimating
rates of irrigation water use is an emerging and rapidly developing litera-
ture. Figure 2 shows that 85% (n = 35/41) of papers were published from
2015 onward, with none of the identified studies published prior to 2009.
These trends are consistent with the greater availability and accessibility

of satellite data over recent years, along with increasing resolution and spectral detail of remote sensing
products and imagery needed to support spatially and temporally explicit irrigation water use estimation.

Just under half of studies (n = 20/41) explicitly sought to estimate irrigation water use or requirements at
individual field or farm scales, typically using data from satellites providing imagery at high spatial resolu-
tion such as Landsat satellites, Sentinel-2, or SPOT (Satellite Pour l-Observation de la Terre). The remaining
studies estimated irrigation water use on a gridded basis (0.25–32.5 km) matching the resolution of underly-
ing satellite imagery, with estimates sometimes aggregated to the level of an irrigation scheme or catchment
for subsequent reporting and analysis. Critically, in many cases the spatial resolution of gridded irrigation
water use estimation was often significantly coarser than the typical plot or field sizes in the study region.
For example, Cheema et al. (2014) estimate groundwater irrigation withdrawals on a 1 km2 grid that far
exceeds typical smallholder plot sizes in their study area—the Indus Basin in Pakistan. Similar characteris-
tics were also observed for the temporal scale and length of studies. Irrigation water use was quantified over
a median 3 years or seasons (range from 1 to 21 years or seasons), with 17/41 studies conducting analysis for
only a single season or year.

Three main methodological approaches to the estimation of irrigation water use emerge from our
meta-synthesis that reflect the primary type of satellite data used to derive estimates of irrigation water use.
First, 20 out of 41 studies use remotely sensed thermal infrared imagery (e.g., from MODIS—Moderate Res-
olution Imaging Spectroradiometer—or Landsat) to estimate crop ET rates, which are then converted in to
estimates of consumptive irrigation water use by subtracting an estimate of effective rainfall. Variations on
this approach involve calculating the difference between estimated ET fluxes for irrigated locations with
those for neighboring rainfed pixels (Romaguera et al., 2014; Van Eekelen et al., 2015; Vogels et al., 2020) or,
alternatively, with ET fluxes simulated by land surface hydrology models. The latter typically do not include
representations of irrigation practices, meaning that the additional ET “observed” in reality through satel-
lite remote sensing can be attributed to irrigation water consumption (Anderson et al., 2015; Droogers et
al., 2010; Lopez Valencia et al., 2020). In a subset of studies (n = 11/20), estimates of consumptive irrigation
water use are converted to applied or abstracted water by applying efficiency adjustment factors to account
for nonconsumptive losses such as deep percolation or runoff. Typically, these factors are conditioned on the
types of irrigation technology used by farmers in the region and do not vary between farmers operating the
same technology or over time. For example, Msigwa et al. (2019) and Van Eekelen et al. (2015) both assume
a constant irrigation application efficiency of 75% for case studies in southern Africa based on assumptions
about prevailing irrigation technology mixes across their study areas.

A second category of models estimate irrigation water use based on satellite soil moisture observations
from either passive (e.g., SMOS—Soil Moisture Ocean Salinity and AMSR—Advanced Microwave Scanning
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Radiometer) or active (e.g., ASCAT—Advanced SCATterometer and Sentinel-1) microwave sensors. Simi-
larly to thermal-infrared models, two broad methodological approaches are applied in soil moisture-based
models of irrigation water use. First, “observed” soil moisture changes can be used in conjunction with
meteorological data and soil moisture balance models to solve for the unknown rate of irrigation (Brocca et
al., 2018; Jalilvand et al., 2019). ET fluxes used in the inversion of soil water balance models are typically
estimated using empirical relationships between ET and soil moisture. However, some studies also utilize
satellite-based ET time series, combining information from thermal-infrared and microwave sensors. An
alternative approach for isolating effects of irrigation is to compare observed soil moisture changes detected
using microwave sensors with soil moisture changes predicted for the same location by land surface models
that omit irrigation processes (Zaussinger et al., 2019; Zohaib & Choi, 2020). A variation on this approach is
adopted by Abolafia-Rosenzweig et al. (2019) who assimilate satellite soil moisture data within a land sur-
face hydrological model Variable Infiltration Capacity model (VIC) to derive estimates of the underlying rate
of irrigation water use. As for thermal-infrared models, additional adjustment factors based on technical
system efficiencies may subsequently be applied to determine applied or abstracted rates of water, in partic-
ular to account for nonconsumptive losses of irrigation water before entering the soil profile (e.g., surface
runoff and canopy evaporation) that are not captured by satellite soil moisture data.

Finally, the third category of models used to estimate irrigation water use are crop coefficient models. These
models utilize reflectance-based estimates of crop coefficients, which capture crop vegetation condition on
a given day obtained as a function of vegetation indices (e.g., normalized difference vegetation index [NDVI]
and enhanced vegetation index [EVI]) derived from different combinations of spectral bands captured by
satellite imagery (Campos et al., 2017). Crop coefficients are then inputted, along with meteorological data,
to soil water balance models to estimate rates of irrigation given assumptions about the level of soil moisture
depletion at which irrigation will be triggered and expected application and conveyance efficiencies of water
use. A key difference between crop coefficient and thermal-infrared or soil moisture-based models is that
reflectance-based crop coefficient models are most commonly used to provide estimates of crop irrigation
requirements rather than actual abstraction rates (Abuzar et al., 2017; Campos et al., 2017; Foster et al., 2019;
Gonçalves et al., 2020; Santos et al., 2010; Segovia-Cardozo et al., 2019; Vuolo et al., 2015). This is because
reflectance-based crop coefficients capture reductions in crop ET caused by suboptimal crop development
over the growing season but do not provide direct information about additional reductions in crop ET as a
result of water stress limiting plant transpiration. Instead, underlying soil water balance models typically
assume that farmers' trigger irrigation when soil moisture depletion reaches the level at which stomatal
closure would be triggered (Foster et al., 2019; Gonçalves et al., 2020), thus generating an estimate of the
amount of irrigation that would need to have been applied to avoid water stress. Where these assumptions
are violated, or if uncertainties exist in the assumed threshold for initiation of stomatal closure or other
model inputs (e.g., irrigation application efficiencies), then estimates of irrigation water use are likely to
diverge from true abstraction rates (Peña-Arancibia et al., 2016).
2.3. Model Validation and Uncertainties
Satellite remote sensing provides an indirect measure of irrigation water use, and therefore, it is important to
verify the accuracy of water use estimates against ground-truth data. Of the 26 studies that estimate irrigation
water use (i.e., excluding those studies focused solely on estimating crop irrigation requirements), we find
that only 7 compare estimates of irrigation water use against real-world in situ observations at field or farm
scales (Figure 3) that are the primary unit of management for agricultural water use in most regions. Of
these seven studies, six compared estimates of irrigation water use with in situ records for less than 50
unique fields or farms with only one study (Bretreger et al., 2019) utilizing a more substantial (n = 1,365)
ground-truth data set. Of the other 19 studies, Figure 3 shows that 11 studies conduct no validation or rely
solely on synthetic water use data (i.e., estimates of water use derived using models considering idealized
farmers behavior). The remaining (eight studies) compare estimates against water use statistics aggregated
at administrative levels, for example, an irrigation district, county, state, or nation.

Similar patterns are also observed when considering the number of years of in situ data used for valida-
tion, which ranges from 1–17 years (median of 4 years) for studies that performed some comparison with
observation data. Validation of satellite-derived estimates is commonly only conducted for a limited range
of hydrometeorological conditions, which may limit insights about model performance given that irrigation
efficiency (Foster et al., 2019) and meteorological data uncertainties (Gibson et al., 2017; Mourtzinis
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Figure 3. Spatial scale at which each of the 26 studies estimating irrigation
water use based on satellite remote sensing reviewed were validated.
“None” denotes studies for which no validation was conducted, and
“Synthetic” refers to studies that were tested against simulated water use
data

et al., 2017) have been shown to be strongly dependent on hydroclimatic
conditions. Studies by Brocca et al. (2018) and Abolafia-Rosenzweig et al.
(2019) provide notable exceptions to the short temporal length of most
validation exercises. These studies instead leveraging differences in rain-
fall patterns between sites in different agroclimatic regions to conduct
more detailed testing of the performance of soil moisture-based irriga-
tion water use estimation algorithms. However, these comparisons are
based on synthetic water use data and, as a result, are limited in their abil-
ity provide robust conclusions about the reliability of satellite water use
estimation in real-world agricultural systems.

Direct comparison of reported accuracies of satellite-based irrigation
water use estimates is challenging due to differences in reported per-
formance metrics, lack of access to underlying data and model outputs,
along with large variability in the scales (spatial and temporal) and
sources of validation data used in each study. However, from the limited
set of studies that conduct multiplot validation at field or farm scales,
it is clear that large differences exist between actual and estimated irri-
gation use rates at field or farm scales. Bretreger et al. (2019) find that
errors in water use estimates range between ±20% and 60% even when

averaged over multiple plots and years, with significantly larger errors for individual plots or when vary-
ing assumption about crop types, management practices, and baseline meteorological data. Similar errors
are also reported in other field or farm-scale assessments. Garrido-Rubio et al. (2020) report plot-level
root-mean-square error (RMSE) in irrigation water use by crop type ranging from 44–176 mm (6–77% of
actual water use), while Battude et al. (2017) report RMSE's of 32–60 mm (19–35% of actual water use) at
field levels even when averaging estimates over several years. Lower, but still significant, errors (RMSE of
44 mm relative to actual mean water use of 245 mm) are reported by Olivera-Guerra et al. (2020) for five
plots over two to four seasons using a thermal-infrared-based model. Olivera-Guerra et al. (2020) focus on
wheat production in Morocco where precipitation and cloud cover are minimal and use validation data from
experimental plots, showing that uncertainty in water use estimation remains significant even if it is possi-
ble to reduce errors introduced by input data uncertainty or unobserved heterogeneity in farmer irrigation
management practices.

Deviations between estimated and observed water use are still found when comparing estimated and
observed water use at larger spatial scales (e.g., irrigation district or administrative region), suggesting that
aggregation of water use estimation in most cases does not smooth out of errors introduced by localized
variations in farmer irrigation behavior or input data uncertainty. Peña-Arancibia et al. (2016) find that esti-
mated annual district-scale irrigation extractions based on thermal-infrared ET models contain errors of
around 20–100%, with larger errors observed for groundwater compared to surface water extractions. Sim-
ilarly, large errors are also observed for studies using satellite soil moisture models. Jalilvand et al. (2019)
obtain aggregated errors of 13 mm/month for an irrigated region in Iran, while Zaussinger et al. (2019) report
errors in state-level water use estimation in the United States of 5.2–5.3 km3/yr. One exception is Hunink
et al. (2015) who report smaller RMSE's—7% to 13% for scheme-level water use estimates aggregated across
plots with similar crop types—in a study in SE Spain using NDVI-based crop coefficients. Largest errors are
reported for normal rainfall years relative to drought years, suggesting a potential influence of weather con-
ditions on estimation accuracy due to the confounding effect of precipitation uncertainty on satellite-based
irrigation estimates.

Overall, we find that only those studies that utilize stylized error-free synthetic data for validation gen-
erally report closest correspondence with water use validation data. Studies by Brocca et al. (2018) and
Abolafia-Rosenzweig et al. (2019), for example, report correlation coefficients for soil moisture-based irri-
gation estimates of greater than 0.9 in some scenarios. These results reflect the fact that synthetic model
experiments assume that all input data to algorithms used to estimate irrigation water use, including mete-
orological data, satellite imagery, and representations of farmer irrigation behavior, are available and can
be defined without error or uncertainty. When these assumptions are relaxed, accuracy of water use esti-
mation is shown to deteriorate, with significant reductions in the accuracy of irrigation estimation using
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satellite soil moisture data as either the return time or noise of satellite soil moisture observations is arti-
ficially increased to levels that are consistent with real-world Earth observation data (Brocca et al., 2018;
Abolafia-Rosenzweig et al., 2019).

2.4. Sources of Measurement Error and Uncertainty
Drawing on evidence reported in the 41 studies captured in our synthesis of existing published literature,
along with wider supporting literature on satellite ET estimation, three main factors underpinning reported
uncertainty in satellite-based irrigation water use estimation can be identified: (1) accuracy and resolution
of satellite data sets, in particular relative to the scales of in situ data and farmer irrigation decision-making;
(2) quality of input meteorological data used in estimation of irrigation water use; and (3) uncertainty in the
specification of farmer irrigation behavior heuristics and management practices, including the scheduling
and efficiency of irrigation decisions. Each of these is discussed in turn below.
2.4.1. Satellite Data Uncertainty and Resolution
Remote sensing models of irrigation water use are based on indirect estimates of ET, soil moisture, and/or
crop condition obtained from multispectral or microwave satellite imagery. Measurement of these variables
contains uncertainties—due to noise or errors in raw imagery, along with uncertainty in the underlying algo-
rithms used to translate raw spectral signals—that, in turn, will propagate in to estimates of irrigation water
use. Accuracy of actual ET estimation or crop coefficients from multispectral satellite imagery, for example,
has been shown to be reduced due to limited spatial resolution of satellite data products relative to agricul-
tural field sizes (Fisher et al., 2017; Vogels et al., 2019), gaps in the frequency of image acquisition caused
by cloud cover (Senay et al., 2016), uncertainties in the measurement via satellites of key inputs to energy
balance models such as surface temperatures or net radiation (Fisher et al., 2008), difficulties in adequately
parametrizing effects of soil moisture (Purdy et al., 2018), or advection processes (Aragon et al., 2018) on
ET fluxes, along with operator errors or biases introduced when implementing ET estimation algorithms
(e.g., in the selection of hot/cold pixels when constraining surface energy balance models— Long & Singh,
2013). Moreover, for a given location and time, large differences often are found in the absolute values of
actual ET estimated using different energy balance algorithms and models (Biggs et al., 2016; Ershadi et al.,
2014; Gonzalez-Dugo et al., 2009; Javadian et al., 2019; Medellin-Azuara et al., 2019), with little consensus
in the scientific literature about the best-performing model types (Zhang et al., 2016). Together with limited
availability of in situ ET observation data for validating satellite estimates, this creates challenges for water
managers considering use of remotely sensed ET data in irrigation water use estimation and monitoring.

Similar difficulties for quantifying and validating uncertainties are also observed when using satellite-based
soil moisture products for irrigation use estimation. ET flux estimates are a key input to soil moisture bal-
ance algorithms (Brocca et al., 2018), and, as a result, uncertainties in estimates of these fluxes—whether
estimated using satellite data or derived from empirical relationships with soil moisture condition—will
influence accuracy of resulting irrigation water use estimation. Noise in the observed soil moisture signal
will also bias soil moisture change retrievals and exacerbate uncertainty in irrigation water use estimation
based on these data. Data noise and resulting detection of spurious irrigation signals have been attributed
to the confounding influence of vegetation backscatter on soil moisture signals along with the coarse res-
olution of satellite soil moisture products (Abolafia-Rosenzweig et al., 2019; Brocca et al., 2018; Kumar et
al., 2015; Zaussinger et al., 2019). Existing soil moisture products have a spatial resolution (25–50 km) that
far exceeds that of individual plots in developed-world agricultural systems (Zaussinger et al., 2019) and are
orders of magnitude larger than typical smallholder plots (Vogels et al., 2019). Local (i.e., subpixel) effects of
irrigation will be blurred out in landscapes with complex heterogeneity in agricultural land use, irrigation
management practices, or topography, although aggregated irrigation signals may be detectable where the
majority of land within a pixel is irrigated and cropping/management practices are mostly homogeneous
(Lawston et al., 2017). As a result, coarse-scale soil moisture products currently are unlikely to be able to
accurately detect local patterns of irrigation at field or farm scales that are critical for spatially explicit water
use accounting, management and policy enforcement.
2.4.2. Meteorological Data Quality
Estimates of irrigation water use based on satellite remote sensing are affected by uncertainty not only in
satellite-derived variables but also in other inputs to irrigation water use models. In particular, meteorolog-
ical data are a key input to model-based estimates of irrigation water use and an important driver of actual
farmer irrigation decision-making. However, meteorological data in many regions are subject to significant
uncertainties at scales (field to district) relevant for water management and regulation.
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Precipitation gauging networks in many parts of the world—especially in developing countries—are declin-
ing and often sparsely distributed (Menne et al., 2012). The limited observation data that do exist also may
suffer from large data gaps and errors, exacerbated by the fact that not all countries make precipitation data
from national monitoring networks freely available. As a result, the only spatially and temporally consis-
tent precipitation data sets available in many locations are from satellite or model reanalyses data sets (e.g.,
Funk et al., 2015). As with ET flux estimates, absolute values from different gridded precipitation products
can differ substantially from each other (Beck et al., 2020). Large uncertainties exist in the accuracy of satel-
lite precipitation data sets in regions where in situ data is unavailable to support calibration and validation,
posing substantial challenges for model-based solutions for irrigation water use accounting and agricul-
tural climate risk assessment in these regions (Parkes et al., 2019; Van Wart et al., 2013). Critically, in the
absence of detailed in situ observations it is extremely difficult to evaluate or compare the relative perfor-
mance of alternative gridded precipitation products, thus limiting capacity of users to quantify or minimize
uncertainty in subsequent irrigation water use estimates based on these data.

While the density and completeness of in situ precipitation records in North America and Europe are much
higher (Menne et al., 2012), significant levels of uncertainty can still exist in the estimation of precipitation
at field levels as part of water use estimation for groundwater policy or water rights enforcement. Precipi-
tation event timing and rates can vary between rain gauges, in particular in regions characterized by local
convective rainfall regimes. For example, Gibson et al. (2017) note large differences in rainfall cumula-
tion and seasonal totals between several closely spaced (<10 km) gauges in southwestern Nebraska in the
United States. Gridded weather data sets in regions with extensive monitoring networks for calibration and
validation also still display meaningful errors in local precipitation estimates. Mourtzinis et al. (2017) find
significant differences between estimates of seasonal water deficits and crop yields based on in situ weather
stations and high-resolution gridded weather data sets (Daymet and PRISM) in Midwest of the United States.
These trends are broadly consistent with reported uncertainties in irrigation water use estimates from stud-
ies in our sample based on satellite soil moisture, which typically higher levels of estimated accuracy in
semiarid and arid environments (Brocca et al., 2018) or drought years (Hunink et al., 2015) where precip-
itation contributes a small or negligible amount of crop water use. This reflects the fact that soil moisture
models derive estimate of irrigation water use (e.g., Abolafia-Rosenzweig et al., 2019; Brocca et al., 2018;
Jalilvand et al., 2019) as a function of the difference between the total water that is “observed” to enter the
soil (i.e., from a change in soil moisture condition) minus inflows from precipitation. Where irrigation and
precipitation occur simultaneously, uncertainty in precipitation may therefore mask or bias the irrigation
signal in the soil moisture time series in ways that would be less likely to occur if precipitation was low or
minimal during the growing season.

While precipitation data are cited as key driver of uncertainty in estimated irrigation water use, it is also
important to note that other meteorological input variables may influence accuracy of water use estimation.
Bretreger et al. (2019) show that uncertainty in the estimation of reference ET, which is influenced by fac-
tors such as temperature, humidity, and wind speed, can also lead to large variations in resulting estimates
of irrigation water use. Likewise, as previously noted, estimates of crop ET based on thermal-infrared satel-
lite imagery are affected by uncertainty in meteorological data such as surface air temperature and vapor
pressures (Fisher et al., 2017). Together, uncertainties in key water fluxes (i.e., precipitation and ET) have
potential to generate significant errors in estimates of irrigation water use, which will not be addressed solely
by improving spatial or temporal resolution of satellite imagery.
2.4.3. Heterogeneity in Irrigation Behavior and Efficiency
Irrigation abstraction rights, where defined, typically are specified and enforced in terms of a quantity of
abstracted or applied water use (Molle & Closas, 2020a). To support monitoring and management, it is crit-
ical that remote sensing models are able to estimate accurately the total amount of water abstracted by a
farmer as opposed to only the consumptive rate of irrigation water use that does not consider inefficiencies
associated with irrigation application or conveyance. As discussed in section 2.2, this is typically achieved
by application adjustment factors to convert estimates of consumptive irrigation water use in to estimates
of applied or abstracted rates of irrigation (e.g., Cheema et al., 2014; Fehri et al., 2019; Msigwa et al., 2019;
Van Eekelen et al., 2015; Vogels et al., 2020).
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Figure 4. Crop-water production showing the relationship between applied
irrigation and crop yield for maize in the southern High Plains region of
the United States drawn from data presented in Foster and Brozović (2018).
The black vertical solid line illustrates a hypothetical water use constraint
of 450 mm (approximately 18 in.), with the black vertical dashed lines
showing hypothetical permutations of this allocation with measurement
errors of ±20%.

In practice, these assumptions are unlikely to capture the true het-
erogeneity in field or farmer level irrigation efficiency. Several stud-
ies in our sample estimate crop irrigation requirements using either
thermal-infrared or crop coefficient models and compare these estimates
to in situ abstraction data (Abuzar et al., 2017; Campos et al., 2017; Elnmer
et al., 2018; Foster et al., 2019; Gonçalves et al., 2020; Ma et al., 2018;
Santos et al., 2010; Segovia-Cardozo et al., 2019; Vuolo et al., 2015; Wu
et al., 2015). Universally, these studies show that efficiency—defined
here as the ratio of irrigation abstracted or applied to crop irrigation
requirements—varies significantly both between fields and over time.
For example, Foster et al. (2019) analyze over 9,000 irrigation records in
Nebraska showing that farmers increase irrigation efficiency in drought
years and on finer textured soil types, largely in response to higher costs of
irrigation pumping. Similar results are also reported by Segovia-Cardozo
et al. (2019) and Gonçalves et al. (2020) for case studies in Spain and
United States, respectively, who both identify large farmer-level hetero-
geneity in irrigation efficiency that is not captured by heterogeneity in
technology choice, while Van Eekelen et al. (2015) also note that true
irrigation efficiencies are likely to vary significantly from their baseline
assumption of 75% across Incomati basin in southern Africa.

Given these findings, we argue that while a fixed technological efficiency
may be able to predict reasonably water use average over multiple years
and fields, such assumptions are likely to mask important spatial and

temporal heterogeneity in irrigation water application or abstraction rates at plot scales. Indeed, studies in
our sample show that accuracy of water use estimates in general improves when estimates are averaged over
a large number of plots and years (Foster et al., 2019), suggesting that, in some cases, errors in satellite-based
estimates may cancel out at larger spatial and temporal scales. However, as highlighted in section 2.3, notable
errors can still exist even after such averaging is conducted. Importantly for efforts to utilize remote sensing
as a low-cost substitute for in situ monitoring, local-scale uncertainties will persist irrespective of the accu-
racy of ET or meteorological data sets, highlighting the importance of improvements in behavioral as well
as biophysical data to support irrigation water use estimation.

3. Economic and Hydrologic Impacts of Measurement Errors
One of the proposed uses of satellite-based water use estimates is to support field-level water use accounting
and water rights management (Droogers et al., 2010), addressing challenges to monitoring and enforcement
of water use allocations posed by limited in situ metering of irrigation wells. Given observed uncertainty
in satellite-based water use estimates at these resolutions (section 2.3), it is important to assess what impli-
cations measurement errors might have for both farmers' economic returns and the effectiveness of water
management policies.

To examine the welfare implications of water use measurement errors for farmers, Figure 4 presents a
production function that illustrates relationship between irrigation inputs and crop yield outputs. The pro-
duction function given in Figure 4 is drawn from an example presented in Foster and Brozović (2018) for
maize production in the High Plains region of the central United States. This production illustrates the non-
linear relationship between applied irrigation and crop yields, which is not specific to our case study crop
or region. Indeed, a range of studies have shown that crop yields typically exhibit an s-shaped or curvilin-
ear relationship with crop yields (English et al., 2002; Fereres & Soriano, 2007; García-Vila & Fereres, 2012;
Geerts & Raes, 2009; Trout & DeJonge, 2017). Yields initially increase approximately linearly with additional
units of applied irrigation. Beyond a point, the marginal productivity of irrigation water use then declines
as nonconsumptive losses (e.g., soil evaporation and deep percolation) from extra units of applied irriga-
tion, until eventually plateauing (i.e., zero marginal productivity of irrigation) when crop water demands
are fully satisfied. Note that if the production function was projected further to the right then the marginal
value product of irrigation would eventually become negative due to the negative effects of waterlogging on
crop development and yield formation.
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Figure 5. Relationship between the standard deviation of water use measurement error (%) and economic welfare loss
to a farmer (%). Analysis assumes that errors are normally distributed with mean error of 0% and that baseline water
use allocation is 450 mm. Welfare loss calculation use the production function shown in Figure 4 and assume a crop
price of $190/tonne, irrigation cost of 0.75$/ha-mm, and fixed production costs of $1,200/ha consistent with typical
crop production costs in the High Plains region of the United States (Klein et al., 2019)

The solid vertical line on Figure 4 represents a hypothetical regulatory constraint to irrigation rates. Water
use measurement errors mean that the actual allocation of water to the farmer may in fact be greater or
less than the intended limit, as illustrated, for example, by the black dashed lines in Figure 4. Where water
use is overestimated, the farmer will be subject to a stricter than intended restriction on water use resulting
in lower economic returns due to the reduction in crop yield. In contrast, if water use is underestimated,
the farmer will be able to increase water use above the intended limit. Importantly, however, water use will
not increase beyond the level that would maximize profits for the farmer, which may be less than the limit
imposed if the magnitude of underestimation is large.

Imposing a normal distribution of water use allocations with mean equal to the intended water use con-
straint of 450 mm per year (i.e., average measurement error is 0), Figure 5 shows that farmers' economic
returns decrease nonlinearly with increases in the magnitude of the water use measurement error even
where measurement error is unbiased. Economic losses to a farmer occur due to the underlying functional
shape of the crop-water production function (Figure 4) and associated profit function. Specifically, the shape
of these functions means that marginal losses (reduced crop yield) from an overestimation of water use
(resulting in a smaller actual pumping limit) exceed the marginal gains (increased crop yield) from an
underestimation of water use (resulting in a higher actual pumping limit).

This result is not specific to the production function shown in Figure 4 or the imposed distribution of mea-
surement errors. In the supporting information of the manuscript, we show theoretically that unbiased
measurement errors will always lead to welfare losses for farmers due to Jensen's inequality. Specifically,
Jensen's inequality states that the mean of a convex (concave) function of a variable is always greater (lower)
than the function of the mean variable. In the context of the example presented here, this condition means
that the average economic return from a distribution of variable water allocations with mean equal to the
intended water allocation will always be less than the average economic return to the intended water allo-
cation itself. The magnitude of welfare losses increases with the variance in the underlying measurement
error and will be largest where measurement error affects farmers' with a high marginal value of water use.
In particular, impacts of measurement error may be magnified significantly where overestimation of water
use means farmers' are unable to satisfy minimum water needs to avoid crop failure. For example, partial or
complete damage to perennial crops could result in very large economic losses, due both to the high value
and large reestablishment costs of perennial crop production.

Measurement errors have impacts not only on farmers' economic returns but may also impact the per-
formance of water management policies depending on the underlying policy goals in a given region. For
example, measurement errors may have large impacts on the effectiveness of policies designed to man-
age short-term or acute impacts of irrigation abstractions. In groundwater irrigation systems, for example,
short-term or spatially localized increases in pumping rates due to measurement errors could exacerbate
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significantly nonlinear externalities of pumping, such as streamflow depletion, well interference, or saline
intrusion, that are key drivers of groundwater management in many regions worldwide (OECD, 2015). Simi-
larly, for surface water irrigation, unintended spatial or temporal variability of abstractions may create acute
water shortages for other downstream users and could have damaging impacts on freshwater ecosystems
that depend on maintenance of instream flows at specific times of year as opposed to long-term average
rates of water availability or storage (Stewart et al., 2020). In contrast, management of long-term regional
aquifer depletion is likely to be minimally impacted or unaffected by measurement errors where errors are
unbiased. This is because spatial or temporal variability in abstractions will not affect the ability to manage
long-term depletion as groundwater storage responds approximately linearly to pumping, and over space
and time water use will converge to the intended volumetric limit (e.g., to balance with long-term aquifer
recharge).

Our analysis and the discussion above has explored the effects of measurement errors from a monitoring
system that is unbiased. However, in practice, measurement errors may not always be unbiased. Monitoring
approaches that consistently overestimate true water use are likely to lead to significant unintended eco-
nomic losses for farmers, in particular where they affect users whose marginal value of water is high, leading
to reduced trust, acceptability and sustainability and effectiveness of water use policies. Conversely, consis-
tent underestimation of water use could allow farmers to overexploit water resources, limiting effectiveness
of policies designed to manage social and environmental impacts of irrigation water use whether from
groundwater or surface water. However, at present, measurement error properties (e.g., distribution, magni-
tudes, and biases) remain challenging to characterize given the lack of objective validation of satellite-based
water use estimates in the literature (section 2.3) and limited accessibility of public disaggregated water use
data sets for ground truthing (Foster et al., 2019; Zipper et al., 2019).

4. Implications for Use of Satellite Water Use Estimates in Agricultural Water
Management and Policy

Our analysis has shown that, despite growing interest among researchers and policymakers, satellite-based
estimates of irrigation water use remain highly uncertain, with potential for measurement errors to generate
significant negative impacts on both farmer welfare and water resource sustainability. In this context, below
we discuss potential opportunities and challenges for reducing uncertainties in satellite-based estimation of
irrigation water use. Subsequently, we discuss how data provided by satellite remote sensing could be most
effectively leveraged to support agricultural water use accounting and policy, with specific emphasis on con-
sidering trade-offs between monitoring accuracy and costs along with alternative uses of remote sensing in
conjunction with in situ monitoring to enable improved accounting and management of irrigation water use.

4.1. Opportunities and Challenges Exist for Reducing Satellite-Based Measurement Errors
One of the key challenges associated with estimation of irrigation water use from remote sensing relates
to the uncertainty in underlying estimates of key crop-water variables (e.g., ET and soil moisture) derived
from satellite imagery (section 2.4). Several opportunities exist to improve the accuracy and reliability of
irrigation water use estimation. For example, Fisher et al. (2017) outline how improvements in spatial and
temporal resolution of thermal-infrared imagery could support improved accuracy of ET estimation at local
scales across agricultural landscapes. Further improvements in ET estimation may also be possible to obtain
through integration of thermal-infrared and microwave imagery, including leveraging land surface temper-
ature (Holmes et al., 2015) and surface soil moisture (Purdy et al., 2018) data from microwave sensors that
provide data independent of cloud cover.

Similar improvements in the accuracy of soil moisture-driven models could be achieved by leveraging recent
and planned future advances in the spatial and temporal resolution of satellite soil moisture products, for
example, through the Sentinel-1 mission (Abolafia-Rosenzweig et al., 2019; Brocca et al., 2018). At present,
however, these data come at the cost of reduced temporal resolution that has been shown to reduce accuracy
of irrigation estimation in synthetic experiments negating some of the benefits of improved spatial resolution
of imagery (Abolafia-Rosenzweig et al., 2019). While Sentinel-1 may improve the underlying spatial resolu-
tion of soil moisture data, observations still only capture moisture signals in the near-surface (top 5–10 cm).
Thus, where rapid drainage occurs to deeper soil layers—for example, as would be expected under large
irrigation events—resulting depths of irrigation may be underestimated (Olivera-Guerra et al., 2020), with

FOSTER ET AL. 11 of 19



Water Resources Research 10.1029/2020WR028378

potential for uncertainty to be further compounded by imperfect knowledge of local soil hydraulic properties
governing water fluxes and storage.

Improvements in the accuracy and resolution of ET or soil moisture monitoring may help to close some of
the gaps between estimated and actual irrigation water use. However, a key challenge remains to convert
satellite-based measurements of consumptive water use in to estimates of applied or abstracted water. Previ-
ous discussion (section 2.4.3) has highlighted the difficulties of quantifying local-level spatial and temporal
heterogeneity in irrigation efficiency, which will not be addressed by improvements to spatial, temporal,
or spectral resolution of satellite imagery alone. One alternative to address this issue would be to instead
use satellite data as a tool to enforce restrictions or regulations pertaining to consumptive as opposed to
applied water use. Consumptive use management has been proposed, in particular, to support management
of long-term aquifer depletion in regions with intensive groundwater irrigation (Molle & Closas, 2020a),
due to the fact that consumptive water use is equivalent to net extraction of water from an aquifer—that is,
the amount of water removed from aquifer storage after accounting for return flows caused by inefficien-
cies in the application and conveyance of abstracted water to fields. As such, monitoring of consumptive use
of groundwater could provide a potentially effective tool to sustainably balance agricultural water use with
recharge rates and limit long-term storage depletion.

While a potential answer to some of the challenges associated with indirect satellite-based monitoring of
agricultural water use, in particular in groundwater dominated systems, switching to consumptive use man-
agement is not a panacea solution. ET is estimated indirectly from satellite data and, as a result, will always be
subject to some uncertainties even in regions such as North America with large field sizes and well-defined
land use (Fisher et al., 2017; Senay et al., 2016). Moreover, even with continual improvements in the accu-
racy of ET estimates, quantifying consumptive irrigation water use still depends on reliable precipitation
data that may not be available at plot scales even in densely monitored regions (Mourtzinis et al., 2017). Sim-
ilarly, where groundwater and surface water are used conjunctively, or where an individual plot is served
by multiple abstraction licenses, attributing rates of consumptive use to specific water rights and sources
will also be challenging. Given that crop water needs in many regions are often met by a combination of
groundwater and surface water (Pulido-Velazquez et al., 2016; Tsur & Graham-Tomasi, 1991), along with
supplemental water supplied by rainfall (Fishman, 2018; Russo & Lall, 2017), this suggests that the accuracy
of satellite-based estimation of consumptive water use may be constrained by a number of factors beyond
the quality of remote sensing data and models alone.

A further challenge for use of satellite-based estimates of consumptive water use in policy is the validity of
the assumption that return flow dynamics have negligible influence on the performance of water manage-
ment strategies. While this may be true when seeking to manage long-term spatially aggregated changes in
water availability (e.g., regional aquifer depletion), it neglects the important effects of variability in irrigation
efficiencies and return flows on local short-term externalities of irrigation abstraction. For example, consider
two farmers whose consumptive water use rates are identical but who differ in their level of irrigation effi-
ciency. The farmer with the lower efficiency will need to pump a greater volume of water—although their
long-term net extraction remains the same. Where groundwater is the main source of water for irrigation,
additional pumping will result in greater short-term aquifer drawdown in and around the pumping well
that may exacerbate short-term acute externalities of abstraction such as streamflow depletion (Palazzo &
Brozović, 2014) or well interference (Perrone & Jasechko, 2017). Similar challenges also exist for surface
water irrigation or conjunctive use of both groundwater and surface water. Time lags and spatial redistri-
bution of return flows may alter short-term availability of water for downstream users (Speir et al., 2016;
Velpuri et al., 2020), with negative consequences where timing of water supply is important for these users,
such as for freshwater ecosystems that are highly sensitive to intraseasonal flow dynamics (Stewart et al.,
2020).

4.2. Choice of Monitoring Approach Involves Trade-Offs Between Accuracy and Costs
The discussion thus far has highlighted that while opportunities exist to improve the accuracy of
satellite-based irrigation water use estimation—whether through new satellite data and models or alterna-
tive approaches to water rights accounting—eliminating uncertainties completely is unlikely to be possible.
Indeed, in situ metering itself is also subject to uncertainties even where meters are reliably calibrated, with
potential for more substantial errors where meters are improperly maintained, affected by tampering, or
where water use records are self-reported by farmers.
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In this context, there is a need for further to evaluate the economic and hydrologic implications of differ-
ent approaches for monitoring agricultural water use as a function of their accuracy, reliability, and costs.
Our analysis suggests that measurement errors could have important negative implications for farmer wel-
fare and effectiveness of water management strategies. However, accurate in situ metering is also costly
to implement and maintain relative to indirect monitoring through satellite remote sensing, a factor that
has contributed historically to the limited uptake and slow spread of metering in many regions (Balasubra-
manya & Stifel, 2020; Closas & Molle, 2018; Hoogesteger, 2018; Novo et al., 2015). Trade-offs therefore exist
between improved monitoring accuracy versus higher costs of implementation (Escriva-Bou et al., 2020),
which must be balanced in the context of management objectives and heterogeneity in both the value of
water and impacts of abstraction on the environment and other water users.

In some cases, it may not be economically optimal, practically or politically feasible for a regulator to
monitor all irrigation water users with perfect accuracy. Where no or very limited in situ metering of agri-
cultural abstractions currently exists, monitoring via satellite remote sensing may offer a potential solution
to measure water use across landscapes and enable targeted policy interventions to improve long-term sus-
tainability of water resources and rural economies. However, whether or not use of such data will add value
compared to alternative proxy measures of water use already available to decision makers (e.g., crop type
data and energy meter records) remains unclear and should be assessed further in future research. In this
context, we suggest that the value of satellite-based monitoring relative to other potential proxy measures
of water use will depend upon the relative differences in measurement errors and externalities (hydrologic
and economic) resulting from different types of imperfect monitoring. In contrast, where no other proxy
measures of water use exist, the value of imperfect satellite-based monitoring will depend on the balance
between welfare losses resulting from measurement errors, compared with the economic and environmen-
tal impacts of being otherwise unable to regulate abstractions due to the lack of alternative viable monitoring
solutions.

Alternatively, a water management agency could seek to maximize the overall cost effectiveness of irrigation
water management by implementing more accurate forms of monitoring (e.g., in situ meters) in conjunc-
tion with cheaper but less accurate solutions such as satellite remote sensing. Future research should seek
to explore the potential benefits of using in situ meters to monitor and regulate water use solely in loca-
tions where the hydrologic or economic impact of measurement errors are large or nonlinear while relying
on remote sensing or other proxy measures of water use in locations where the marginal impacts of any
measurement errors are small. For example, in locations where water use restrictions are set at levels coin-
ciding with the linear portion of the crop-water production function or where the hydrological externalities
of pumping are largely linear, welfare losses and hydrologic externalities from measurement errors would
likely be small so long as the overall distribution of errors was not biased. In these cases, use of lower cost
methods such as satellite remote sensing might be a more economically efficient means of monitoring and
managing agricultural water use. However, care should also be taken to not assume that remote sensing is
a zero-cost solution for monitoring. While much satellite data are accessible for free, there are large costs
associated with acquiring the technical resources and human capacity to translate satellite imagery in to
estimates irrigated quantities, along with for implementation and enforcement of policies based on these
estimates.

To complement evaluation of trade-offs between monitoring accuracy and costs, greater research attention
is also needed to improve benchmarking of measurement errors from satellite-based approaches for water
use estimation, including quantification of how errors vary across different measurement approaches, spa-
tial and temporal scales, climatic conditions, and agricultural production systems. Such analysis would help
to identify potential pathways, for example, through integration of thermal-infrared and microwave satellite
products (Fisher et al., 2017; Zaussinger et al., 2019) or use of new higher-resolution satellite observations
of ET fluxes (Aragon et al., 2018) and soil moisture (Vergopolan et al., 2020), for improving accuracy of
satellite-based monitoring approaches and would also facilitate comparison with alternative indirect mon-
itoring approaches, such as quantification of groundwater abstraction from existing monitoring of pump
electricity consumption (Kinzelbach et al., 2016; Zekri, 2009). Crucially, improving standards of model val-
idation will require researchers and policymakers to work with farmers to enable greater collection and
sharing of in situ water use data due to the limited availability of disaggregated water use records at present
in the public domain. This will require significant efforts to build trust and apply appropriate data privacy
safeguards around use of such data for development and testing of remote monitoring approaches (Zipper
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et al., 2019), in particular given historic concerns and resistance to the deployment of in situ monitoring in
many irrigated agricultural regions.

4.3. Remote Sensing Data as a Complement Rather Than Substitute to In Situ Monitoring
Our analyses in this paper have focused on the use of satellite remote sensing for quantifying agricultural
water use, considering in particular the opportunities and challenges for water use estimation at plot or field
scales to support water use management and regulation. However, it is important to recognize that other
pathways exist through which satellite remote sensing can contribute to accounting of irrigation abstractions
and support implementation of policies designed to sustainably manage agricultural water use.

First, remote sensing has already been demonstrated to be an effective and reliable tool for monitoring and
mapping of irrigated areas. While some limitations to mapping remain, for example, in regions with sig-
nificant cloud cover or small plot sizes (Ozdogan et al., 2010), the accuracy of satellite-based irrigated area
estimates undoubtedly exceeds that of estimates of applied or consumptive use of irrigation. Regulation and
accounting of agricultural water use based on irrigated areas could be an effective and efficient solution
for managing water use where crop water demands are relatively homogeneous between fields reducing
the need for expensive in situ metering or uncertain indirect estimation of abstraction or consumptive use
rates. Indeed, some regions already adopt this approach as the primary mechanism for regulating agricul-
tural groundwater use. For example, in the La Mancha region of Spain, restrictions on agricultural water
use are enforced based on satellite-derived maps of crop irrigated areas and nonsatellite agronomic esti-
mates of consumptive irrigation water use per unit crop area (Sanz et al., 2016). Likewise, in parts of France
satellite monitoring of irrigated areas plays an important role in targeting spot checks of individual ground-
water users (Rinaudo et al., 2012), in particular where information about water use provided to regulators
is self-reported by farmers (Montginoul et al., 2016).

Satellite-based assessment could also play an important role in helping to support targeted spot-checking of
self-reported water abstraction data. A significant cost of in situ monitoring for regulators—both in terms
of time and financial resources—is the need to manually collect meter readings from a large number of dis-
tributed abstraction locations for which maintaining reliable records may be challenging (Closas & Molle,
2018; De Stefano & Lopez-Gunn, 2012; Hoogesteger, 2018). Recent improvements in real-time remote data
transfer and IOT-based technologies offer a potential solution to reduce costs of real-time monitoring of
in situ metering (e.g., Fernández-Ahumada et al., 2019; Zhao et al., 2017), although these systems have
yet to been implemented on large scales within either developed or developing countries. Additionally,
in-person spot checks remain essential to deter meter tampering or false reporting and to identify locations
of unauthorized or illegal abstraction points. In this context, satellite-based estimates of irrigation water
use could provide valuable information to help in identifying potential “cheating” of regulations, eliminat-
ing need for manual meter checks on all irrigation wells or identifying locations of potential unauthorized
abstractions. For example, Holley et al. (2020) highlight the use of satellite-based assessments of irrigated
areas in combination with water rights inventories for detecting potential locations of noncompliance with
water use regulations in the state of New South Wales in Australia. Similarly, in the western United States,
satellite-based ET data have recently been used to identify irrigated areas as part of adjudication over water
compact allocations between Montana and Wyoming (Thompson Jr, 2019), while in Idaho satellite ET data
have been adjudicate and enforce curtailment policies in the Snake River basin (Allen et al., 2007).

Finally, water use accounting based on Earth observation data has been widely proposed by major interna-
tional agencies to support monitoring and management of water use in low-income or developing countries
where little if any preexisting in situ data exists (Karimi et al., 2013; Van Eekelen et al., 2015; Vogels et
al., 2020). Evidence from our meta-analysis suggests that accuracy of satellite-based estimation of agricul-
tural water use in general increases when averaged over larger spatial or temporal scales. Remote sensing
data could therefore provide useful information about aggregated irrigation water use dynamics to improve
knowledge about catchment water budgets and help to guide larger-scale decision-making about water con-
servation and stewardship. However, our findings also suggest that assertions about the ability of Earth
observation to monitor water use at disaggregated spatial and temporal scales with requirements for only
limited in situ calibration and validation (e.g., Capdevila & Herrmann, 2019) should be treated with cau-
tion and risk creating overconfidence among policymakers and decision makers about capacity of satellite
imagery to provide a quick fix to water data availability constraints in many developing countries. Remote
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sensing should not be seen as a substitute for improved in situ monitoring and failure to adequately acknowl-
edge limitations and uncertainties risks creating policies that hinder rather than support sustainable and
equitable water resource management.

5. Conclusions
A key constraint to water management and policy globally is the lack of reliable and accurate data on agri-
cultural water abstractions, in particular for groundwater irrigation. Our analysis has shown that a growing
body of research exists that seeks to leverage satellite remote sensing in order to address widespread gaps
in in situ monitoring of agricultural water withdrawals from both groundwater and surface water sources.
However, we find a systematic lack of evidence to support the assertion that such methods can capture and
reliably reproduce spatial and temporal heterogeneity in observed irrigation water use. In particular, large
errors are observed in satellite-based water use estimates at field or plot scales that are the primary spatial
unit for water use management and regulation.

Our results show that water use measurement errors, which arise from uncertainties in both model inputs
(e.g., satellite estimates of water fluxes and meteorological data) and process representation (e.g., irrigation
efficiency), will lead to large welfare losses for farmers even where measurement errors are unbiased. Wel-
fare impacts of measurement errors increase nonlinearly with the magnitude of the measurement error and,
furthermore, have potential to significantly undermine the performance and effectiveness of water manage-
ment policies. For example, externalities of irrigation water use may be exacerbated where measurement
errors unintentionally enable farmers to exceed sustainable abstraction limits at times or locations where
the impact of water use on the environment and other water users is large or nonlinear.

On the basis of these findings, we identify and highlight a number of priority areas to support efforts to close
gaps in accounting and monitoring of agricultural water use. Further research is needed to refine existing
satellite-based models of irrigation water use, leveraging opportunities exist to reduce uncertainties through
improvements in the resolution, integration, and interpretation of satellite imagery. Critically, this research
must be underpinned by greater focus on model validation, in particular when seeking to make estimates
of irrigation water use at plot scales and in highly heterogeneous smallholder farming systems. Improved
understanding about the errors and uncertainties in satellite-based water use accounting in turn would help
to inform assessments of the trade-offs between accuracy and costs of indirect satellite monitoring versus
direct in situ metering, including benefits of combining satellite and in situ technologies to deliver reliable
accounting of agricultural water use that is the foundation for effective and sustainable water management.

Data Availability Statement
A summary of studies used to produce the meta-analysis presented in this paper is provided in Table S1
of the manuscript. The production function used to perform a welfare analysis of measurement errors is
reported in Foster and Brozović (2018). The underlying code used to perform this analysis and a copy of the
data given in Table S1 are available from Zenodo (doi.org/10.5281/zenodo.4079027).
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